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Previous measurements of the decay rate of the fluctuation intensity of passive scalars 
in grid-generated turbulence show large variation. New results presented here show 
that the decay rate of passive temperature fluctuations produced by heating the grid 
is a function of the initial temperature fluctuation intensity. Although a full reason for 
this is wanting, spectra of the temperature fluctuations show that, by varying the 
heat applied to the grid, the wavenumber of the maximum in the temperature spectrum 
changes, indicating that the geometry of the thermal fluctuations is being altered in 
some way. In  these experiments the one-dimensional temperature spectrum shows an 
anomalous - $ slope. In order to eliminate the dependence of the decay rate of the 
temperature fluctuations on their intensity, we describe a new way of generating 
temperature fluctuations by means of placing a heated parallel array of fine wires (a 
mandoline) downstream from the unheated grid. Results of this experiment show that 
the decay rate of passive thermal fluctuations is uniquely determined by the wave- 
number of the initial temperature fluctuations. In  this type of flow there appears to 
be no equilibrium value for the thermal fluctuation decay rate and hence for the 
mechanical/thermal time-scale ratio since the thermal fluctuation decay rate does not 
change within the tunnel length, which is the equivalent of nearly one turbulence 
decay time. 

1. Introduction 
One of the aims of contemporary turbulence research is to predict the structure and 

transport characteristics of a scalar in a turbulent flow field. Indeed, for atmospheric 
flows and for many engineering flows, the prediction of the scalar field, be it temper- 
ature, humidity, a pollutant or any other chemical species, is usually the prime 
objective. It could be conjectured that the extension of our knowledge from the velocity 
field to the addition of a scalar to this field should be trivial, yet both theoretically 
and experimentally this problem has proved to be exceedingly difficult, even for the 
most simple types of flow. This difficulty is partly due to our incomplete knowledge 
of the velocity field but it is also due to fundamental problems associated with how 
the random scalar and vector fields are coupled to each other. 

We consider here, from an experimental viewpoint, the simplest case of a scalar 
in a turbulent flow: that of decaying passive temperature fluctuations in approxi- 
mately isotropic grid-generated turbulence. We restrict our study to incompressible 
flow, and since the flow medium is air the Prandtl number is of order unity. That such 
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FIGURE 1. Decay of temperature fluctuations downstream 
of heated grids (after Lin & Lin 1973). 

a subject warrants further study is evident from the compilation of previous experi- 
mental results shown in figure 1. The decay law for this type of experiment is usually 
written in the form 

where @ is the variance of the temperature fluctuations, T is the mean temperature, 
x / M  is the normalized downstream distance, M is the mesh length and B and m are 

- 
&IT2 = B(x/M)-m, (1) 
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constants. x is customarily measured from a virtual origin; in these experiments this 
is within a few M of the grid. For the experimental results shown in figure 1, the decay 
exponent m varies from 0-87 to 3-1. The approximate trend of increasing m with 
increasing initial temperature fluctuation intensity may suggest the influence of 
buoyancy; however, with the possible exception of the highest heating value of Lin 
& Lin (1973), order-of-magnitude analysis indicates that the buoyancy t e r m h  the 
turbulence energy equation is negligible. For the decay of the velocity fluctuation 
intensity 2, numerous experiments (Comte-Bellot & Corrsin 1966) suggest that the 
decay exponent n in the decay law 

G / U z  = A(x/M)-",  (2) 

where U is the mean velocity and A is a constant, is 1.3 & 0.15. Thus while the velocity 
intensity decay exponent has a variation of about 12 %, the temperature intensity 
decay exponent varies by a factor of more than 3. For such flows it would be reasonable 
to expect that the ratio m/n should be unique. 

The significance of the large variation in the decay rate of @ is exemplified when 
we consider characteristic time scales r and re for the velocity and thermal fields 
respectively. We define their ratio r as 

r = ./re = (P/C)/(@/E,), (3) 

where is twice the turbulent kinetic energy, E is the rate of dissipation of kinetic 
energy and ee is the rate of dissipation of half the temperature variance. For grid- 
generated turbulence, from (1)  and (2), r = m/n, the ratio of the decay exponents of 
the temperature and velocity variance. Assuming n = 1.3, the results in figure 1 give 
a variation of r from 0.67 to 2-38, an inexplicably large variation for this ratio in a flow 
in which the controlling time scale would appear to be that of the velocity, which is 
a constant. The significance of the time-scale ratio r in second-order modelling 
procedures is discussed by Newman, Launder & Lumley (1978). 

The initial objective of this study, then, was to gain an understanding of the reason 
for the large disparity of the data in figure 1. 

2. Outline of the experiment 
Our experiment falls into two parts. First we attempted a simulation of the data 

in figure 1 by doing a heated-grid experiment. We found that it is possible to change 
the decay rate of 8;i by changing the heat applied to the grid and thus simulated some 
of the experiments in figure 1 .  The form of the temperature spectra suggests, however, 
that by changing the heat applied to the grid we change the length (and hence time) 
scale of the thermal fluctuations. We then deliberately attempted to change the 
mechanical/thermal time-scale ratio by heating only alternate bars of the grid. In  
this experiment too, the decay rate of @was a function of the heat applied to thegrid. 

In order to introduce temperature fluctuations into the flow in such a manner that 
their decay rate was not a function of their initial fluctuation intensity we carried 
out a second experiment. Here we introduced a plane array of parallel, uniformly 
heated fine wires downstream from the unheated grid. We call this array of wires a 
mandoline because it resembles the French kitchen utensil used to chop and slice 
vegetables. The wire diameters of the mandoline were too fine to shed vortices and 
hence affect the velocity field. By varying the spacing between the wires and the 
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distance of the mandoline from the grid, we were able to control the input scale of 
the temperature fluctuations independently of their fluctuation intensity. 

Because there is a paucity of information in the literature on the form of tem- 
perature spectra in such flows, we document here also a number of three-dimensional 
normalized energy and dissipation temperature spectra for the different experiments 
undertaken. 

3. Experimental apparatus and procedure 
The open-circuit wind tunnel was vertically oriented and had a test section of 

streamwise extent 167 mesh lengths ( M  = 2.54 cm) and cross-section 16 by 16 mesh 
lengths; it is described by Snyder & Lumley (1971). The mean wind speed u was 
6.5m/s. The solidity of the grid was 0.34; it consisted of a biplane arrangement of 
0.476 cm hollow square-sectioned brass rods with their centres spaced 2.54 cm apart. 
Chromal-A conductors encased in alumina insulators were inserted through the rods 
and were fed from a 12OV three-phase supply. The heating of the rods was varied by 
changing the number of rods in series across the power supply. The bars were silver- 
soldered together at their intersection in order to ensure good thermal homogeneity 
across the grid. The maximum power consumption was 11.5kW. For the case when 
every alternate bar was heated, a second grid was constructed with a slight air gap 
between the rods at their intersection. 

The mandoline was made from Chromel-A wire of diameter 0.321mm. It was 
verified experimentally that these wires did not affect the velocity fluctuation char- 
acteristics of the flow. The wires were oriented in only one direction; their spacing was 
5.08 cm and on one occasion 2.54 cm. They were positioned, for the various experi- 
ments, at 1.5,5 and 20 mesh lengths from the grid. To prevent sagging when the wires 
were heated, small springs were positioned in tension between the ends of the wires and 
the tunnel wall. Apart from the scientific significance of using a heated mandoline 
rather than a heated grid it should be noted that far less power was required to produce 
temperature fluctuations. A power consumption of 700 W with the mandoline at 
x / M  = 1-5 produced the same temperature fluctuation intensity as 11.5 kW with the 
heated grid. Thus the mean temperature of the flow remained close to ambient and 
problems of large-scale temperature inhomogeneity were avoided. 

For all runs, r.m.s. velocity and temperature measurements were made across the 
core of the flow to check for homogeneity. Irregular variations of about 5 % for the 
r.m.s. velocity and 7 % for the r.m.s. temperature were measured for both the heated 
grid (all bars on) and the mandoline. For the case of the grid with alternate bars 
heated, horizontal homogeneity was harder to achieve and on some occasions variations 
of approximately 12 % occurred in the r.m.s. temperature across the core of the flow. 
However, on these occasions measurements of the temperature and velocity decay 
were made for positions other than the centre of the core of the flow, and the variations 
in the decay rates for different positions in the core were small compared with the 
gross variation caused by changing the mean power applied to the rods. 

For the heated grid the mean temperature of the air in the test section varied from 
308 to 300 OK depending on the amount of power used and the variation of the mean 
temperature between x / M  = 20 and x / M  = 167 was less than 0.1 "C. The ambient 
temperature was approximately 300 OK. 
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Velocity fluctuations were measured with DISA type 55M constant-temperature 
bridges. A n  initial set of measurements was made (with the grid both hot and cold) 
with an X-wire array to obtain the u (longitudinal velocity) and v (lateral velocity) 
components. For subsequent measurements a single U-wire was used to check that the 
velocity fluctuation characteristics did not alter. The wires were 3pm diameter 
tungsten with a length-to-diameter ratio l /d  of 200. The overheat ratio was 1.8. 
Temperature fluctuations were measured with a fast-response a.c. temperature 
bridge designed by Mr T. Deaton of the University of California at San Diego. The 
temperature sensor was 1-27 pm diameter platinum and had l / d  = 360. 

Velocity fluctuation decay rates and spectra were measured with and without heat 
applied to the grid (or mandoline) and no difference in the decay rate of the fluctuations 
or in the shape and level of the spectra was observed for the data reported here. 
Figure 2 shows two such pairs of spectra. Thus we were satisfied that the temperature 
field was passive. 

The current in the temperature probe was kept sufficiently small to ensure that the 
temperature measurements were not contaminated by velocity fluctuations. As a 
check for velocity contamina,tion, measurements of ‘temperature ’ were made in the 
tunnel under isothermal flow conditions (grid cold). The spectrum measured was 
spiky, indicating some electrical noise, but was of a non-turbulent nature. The r.m.s. 
voltage did not decrease as a function of downstream distance as it should if there were 
velocity contamination. Subtraction of this output voltage of the temperature bridge 
from the temperature measurements deliberately produced by the heated grid or 
mandoline, on a mean-square basis, changed the value of @IT2 by a maximum of 
5 %  at x / M  = 167, the position where the lowest temperature fluctuations were 
produced. This was not a large enough value to change the form of the decay law 
significantly. The frequency response of our temperature probe was calculated from 
formulae derived by LaRue, Deaton & Gibson (1975) and was found to be 2-5kHz, 
a value well above the Kolmogorov frequency for our experiments. 
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For the heated-grid experiment the cross-correlation between u and 8 was found to 
be large ( -  -0.3) and initially we considered that there might be either velocity 
contamination of the temperature measurements or temperature contamination of the 
velocity measurements. However, a point-by-point attempt at compensation on our 
computer did not reduce this correlation. Subsequently we found this high correlation 
to be due to the method of production of temperature fluctuations by the heated grid. 
As further confirmation that  the velocity and temperature signals were not con- 
taminated by each other, the cross-correlation for the heated mandoline was found to 
be between - 0.1 and - 0.05 for the same level of temperature fluctuations as was 
produced by the heated grid. 

Both temperature and velocity signals were high-pass and low-pass filtered at 1 Hz 
and 3 kHz respectively through Krohnhite type 3342 filters. The signals were recorded 
on digital magnetic tape for subsequent playback on a Hewlett-Packard 2100 com- 
puter. During the experiment signals were monitored on true-reading r.m.8. meters 
and spot checks on spectral shape were carried out on a spectrum analyser. The mean 
velocity was measured with Pitot tubes and the mean temperature with thermo- 
couples. Calibrations were done routinely for each experiment. 

The spectra and variances were calculated from between lo5 and 2 x lo5 data 
points. Larger amounts of data did not change the values to be reported in the next 
sect,ion. Conventional FFT routines were used to form the spectra and these were 
smoothed by fitting a rhnning second-order polynomial to  the raw spectra by the 
method of least squares. The one exception to  this procedure was that used for the 
spectra in figure 2, which were produced by a hard-wired spectrum analyser. 

4. The experimental results 
4 .1 .  The velocity data 

Figure 3 shows the fluctuation intensity of u and v as a function of x / M .  The decay 
exponent n forZ2 is 1.34, a decay rate in conformity with numerous other experiments 
at comparable Reynolds numbers (Comte-Bellot & Corrsin 1966). The salient para- 
meters for this flow are listed in table 1. No virtual origin (Comte-Bellot & Corrsin 
1966) was needed to fit the best line through these data or any of the temperature 
fluctuation data to  be described in the next subsection. The 3 data indicate that the 
flow was close to isotropic. The one-dimensional power spectra $(k,)  of ( = g  + 2 7 )  
are shown in figure 4 for three different values of x / M .  Figure 5 shows the three- 
dimensional velocity spectra E ( k ) ,  where 

E ( k )  = -Qkd$(k)/dk.  (4) 

Here 

These spectra have been normalized by division by the local values of 2 and I ,  where 
1 = (u2)8/e. B has been calculated from the velocity decay law and is in good agreement 
with values calculated by integrating the dissipation spectra. Figure 6 shows the 
three-dimensional velocity dissipation spectra normalized with the usual Kolmogorov 
scaling parameters (table 1). Both the energy and the dissipation spectra collapse 
almost perfectly with the above normalization. 

- 
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FIGURE 3. Decay of velocity fluctuations downstream 
of the grid. *, z / U 2 ;  a, F / U 2 .  
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TABLE 1. Velocity flow parameters. The fluctuation parameters are calculated for x / M  = 80. 
R ,  and R, are the mesh and turbulence Reynolds numbers respectively. 

This basic set of velocity data was reproduced for all the flows with the cold grid, 
the hot grid and the mandoline. 

4.2, The temperature data 

The heated grid. Figure 7 shows the temperature fluctuation intensity as a function 
of x l M  for two different grid heatings. The higher heating gives results close to the 
data of Yeh & Van Atta (1973) and Sepri (1976). The decay exponent is 1.41. The 
lower grid heating essentially simulates the data of Mills et al. (1958). Here m = 0.83. 
The basic parameters for these two heated-grid flows are given in table 2. 

Our realization that altering the grid heating changes the decay rate of@ suggested 
that the disparity in decay rates shown in figure 1 may be entirely accounted for by 
differences in the initial values of the temperature fluctuation intensity. (That this was 
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at three different positions downstream from the grid. 

not evident to us at the outset is due to two factors: first, the graph in Lin & Lin 
(1973) contained salinity fluctuation data and did not include the more recent data, 
thus the trend was less obvious; second, we were reluctant to see a trend in data we 
believed should yield a unique time scale; we were more concerned that the disparity 
was due to different experimental set-ups and procedures.) In figure 8 we have plotted 
the fluctuation intensity@/T2 us. the decay slope €or our data and the data in figure 
1 at x / M  = 40 and x / M  = 60. We have neglected one set of data of Lin & Lin (1973) 
because of large scatter. The trend in the data (figure 8) is quite remarkable considering 
the different types of grids and different flow velocities for the different experiments. 
The coefficient of determination of the line of best fit is 0.95. It should be noted that 
the difference of about 70 OK between the mean temperatures T for the highest and 
lowest fluctuation data has an insignificant effect on the trend of the data, which is 
solely due to variations in @. 

The fact that the decay rates of these passive temperature fluctuations are functions 
of their intensity seems to imply that the geometry of the fluctuations is affected by 
their mode of production at the grid. We have shown in the previous subsection that 
the velocity field was close to isotropic, and an  implicit assumption was that the 
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FIGURE 5. Normalized three-dimensional velocity spectra at x / M  = 59 and x / M  = 80. 

k f  

thermaI fluctuations would be isotropic also. We did not measure the three-dimensional 
spectra of temperature fluctuations directly, an extremely difficult task, hence we do 
not have information on whether the temperature field was isotropic or not. However 
the one-dimensional energy spectra k, +e(k,), where 

for the two grid heatings (shown in figure 9) indicate that if the grid heating is varied 
the input scale size of the thermal fluctuations also varies. It is possible that the k, 
and k, components of the thermal field may also change and that the geometry of the 
thermal fluctuations produced by the heated grid may be a function of the grid 
heating. If this is the case, the manner in which the geometry of the temperature 
fluctuations changes is undoubtedly complex, as consideration of figures 7 and 9 
suggests. Figure 9 appears to indicate that as the heating of the grid is increased the 
characteristic length scale of the thermal fluctuations increases. However, the decay 
curves shown in figure 7 imply the opposite; here the 82 decay exponent increases and 
hence the time scale of the temperature fluctuations decreases as more heating is 
applied to the grid. This implies a decrease in the characteristic length scale. Clearly 
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FIGURE 6. Normalized three-dimensional velocity dissipation 
spectra at x / M  = 59 and x / M  = 80. 

the spectra in figure 9 can be regarded as only a qualitative indication that the 
geometry of the thermal field is being affected by the change in grid hating. 

A further problem associated with producing temperature fluctuations by means of 
heating a grid is manifested in the one-dimensional temperature spectra shown in 
figure 10 for the higher grid heating (the spectra for the lower grid heating were of the 
same form). Comparing these spectra with the one-dimensional velocity spectra 
(figure 4), we observe a significant difference in form: the temperature spectra have a 
linear region with a slope close to - 4 suggestive of an inertial-convective subrange. 
For heated grids, exactly the same form has been observed by Yeh & Van Atta 
(1973) end by Sepri (1976). Clearly am inertial-convective subrange cannot occur in 
such a moderate Reynolds number flow. The reason for this anomalous behaviour in 
the temperature spectrum appears to be associated with the cross-correlation and 
coherence between u and 0 and will be discussed in the next subsection, where we 
compare these results with those for the heated mandoline. The temperature spectra 
do, however, collapse well under large-scale normalization and under the assumption 
of isotropy. Figure 1 1 shows the three-dimensional temperature spectra 

E,(k) = - W $ , ( k ) / d k  
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FIGURE 7 .  Decay of temperature fluctuations downstream of the heated grid for two different 
gridheatings. *, 11.5kW; 0 ,  2*1kW;---,Yeh &VanAtta(1973); ----,MillsetaZ. (1958). 

Parameter 
Low grid heating High grid heating 

(2.lkW) (1 1.5 kW) 

0.86 
2-27 x 
300 

0.64 
4-72 x 10-3 

6.49 x 10-3 
8.55 x 10-5 

1.41 

308 
1.22 x 10-2 
1.05 
2.79 x 

6.19 x 10-5 

3.67 x 10-4 

TBLE 2. Temperature parameters for the heated grid a t  x / M  = 80. and €0 were calculated 
fjom the decay laws. A value of 2.26 x was used for V g ,  the thermal diffusivity. 

normalized by @? and 1. Here, as for other normalized spectra to be discussed below, 
the difference in magnitude of the peaks does not represent a trend; it represents the 
maximum scatter observed when other spectra from different positions downstream 
were collapsed in the same manner. Figure 12 shows the three-dimensional temperature 
dissipation spectra normalized with Kolmogorov parameters (table 2). These spectra 
(figures 11 and 12) are for the higher grid heating and are included for comparison 
with other measurements (Yeh & Van Atta 1973) and with our heated-mandoline 
data. 
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FIGURE 8. Temperature fluctuation intensity ln (F/Ta) vs. decay exponent m for the present 
work and for previous investigations. 0 ,  ln(%/Ta) a t  x / M  = 40; *, ln(@/Ta)  at x / M  = 60; 
_._ _ _ _  , best fit for x / M  = 40, 60 (coefficient of determination = 0.95). The lowest grid 
heating of Lin & Lin (1973) (see figure 1) is not included because of large scatter. 

We now briefly mention another experiment with the heated grid which was 
deliberately aimed at changing the initial length scale of the temperature fluctuations. 
It was conjectured that, by heating only every alternate bar of the grid, initially the 
thermal length scale would be twice that of the velocity length scale, i.e. the slope of 
the 82 decay law would be less than that of the 2 decay law. The results of this experi- 
ment show however (figure 13) that even with extremely low temperature fluctuations 
(cf. the results for low heating with all the bars heated, figure 7) the decay rate achieved 
was about the same as for the velocity fluctuations, implying a time-scale ratio of 
about unity. On increasing the power applied to the alternate bars, the decay rate 
progressively increased (figure 13) and the peaks of the one-dimensional energy 
spectra (not shown) moved to lower wavenumbers, as for the case where all the bars 
were heated. We note that  it was the result of this experiment, done with various 
grid heatings because we were having difficulty in obtaining thermal homogeneity, 
that  caused us to vary the heating for the case with all the bars heated. 

The heated mandoline. The strong dependence of the decay rate of the temperature 
fluctuations on the grid heating, with the implication that varying the temperature of 
the grid might vary the geometry of the thermal field, suggested that we should seek 
another method of introducing temperature fluctuations into the flow. Use of a 
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FIGURE 9. One-dimensional temperature spectra at x / M  = 80 for the two different values of the 
grid heating. Arbitrary units have been used for the vertical axis in order to compare the wave- 
numbers at which each spectrum peaks. 

mandoline of fine wires placed downstream from the unheated grid, as we shall show, 
produces results which resolve the problem created by the heated-grid experiment. 

Figure 14 shows the decay of temperature fluctuations for four different configura- 
tions of the mandoline. The origin ( x / M  = 0) was taken at the grid. The configuration 
data, the decay laws and the relevant scaling parameters for these experiments are 
summarized in tables 3 and 4. 

The decay curves in figure 14 show that, by altering the position of the mandoline 
downstream from the grid and by changing the spacing between the wires of the 
mandoline, we were able to change the decay exponent m from 1.29 to 3.20 without 
changing the intensity of the thermal fluctuations significantly (the @/T2  values for 
x / M  = 80 (table 4) show that the fluctuation intensity varies by less than a factor of 
two for the four experiments). 

Three-dimensional temperature spectra at x / M  = 80 computed for the different 
mndoline experiments are shown in figure 15. We present these spectra, computed 
using the isotropic relations, because this is an approximate way of removing aliasing 
and thus making physical interpretation easier. Since our direct evidence for isotropy is 
incomplete, however, this should be regarded simply as a convenient transformation. 
The one-dimensional temperature spectra k, #*(k,) (not shown here) exhibited the same 
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FIQURX 10. One-dimensional spectra of temperature fluctuations at 
three different distances from the heated grid ( 1 1.5 kW). 

trend; thus the relationship between the spectral peak and decay rate is not an 
artifact of this transformation. 

Figures 14 and 15 show that as the decay rate increases so does the wavenumber 
at which the temperature spectrum peaks. It is evident, then, that the decay rate of 
the temperature fluctuations is solely a function of the scale size of the temperature 
fluctuations for these mandoline experiments. Furthermore, faster decay rates of 82 
are associated with higher wavenumbers, i.e. smaller scale sizes, which is an entirely 
reasonable result, and opposite to that for the heated grid, where faster decay rates 
appeared to be associated with larger scale sizes. 

Figures 14 and 15 are summarized in figure 16, where m and r are plotted as a 
function of k,,,, the peak of the respective three-dimensional temperature spectra. 
The relationship is close to linear. Also shown is the location of the peak of the three- 
dimensional velocity spectrum, which did not alter €or the four experiments. Note 
that for a time-scale ratio of unity the ratio of the velocity to thermal scale size is 1.24. 

Figure 17 compares the one-dimensional temperature spectra for the heated grid 
and for the heated mandoline at x l M  = 80 (the mandoline spectrum is for the 5.04 cm 
spacing at x / M  = 20, m = 2.06). The quasi-inertial-subrange behaviour is not in 
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FIGURE 13. Decay of temperature fluctuations downstream from the grid with every alternate 
bar heated. *, grid heating 4.2 kW; 0 ,  grid heating 2.5 kW; *. grid heating 0.64kW. 

evidence for the mandoline data. The behaviour of the temperature spectra for the 
heated grid appears to be attributable to the relatively high value of the u, 0 coherence 
l$u~(k~)12/$u(k~) $@(k,) a t  low wavenumbers; this coherence is shown in figure 18 with 
that for the heated mandoline. The mandoline has low coherence at all wsvenumbers. 
It should be noted that, as the mandoline was brought closer to the grid, the linear 
-Q portion of the spctrum began to reappear and was quite evident when the 
mandoline was placed at x /M = 1.5 from the grid. The coherence at low wavenumbem 
also increased. The cross-correlation coefficients pus are plotted as a function of x / M  
for the mandoline and for the heated grid in figure 19. pue is greatly reduced for the 
mandoline compared with the heated grid. This large negative pue for the heated grid 
is produced because of the velocity deficit behind the hot bars. pus for the heated 
mandoline tends to increase as the mandoline is brought closer to the grid, as would 
be expected, but, even with the mandoline at x / M  = 1.5, pue is nearly one-third 
smaller than for the heated grid. 

The close-to-linear relation between the peak of the three-dimensional temperature 
spectra and the decay exponent for the mandoline data (figure 16) suggests that the 
appropriate length scale for these data should be 117. Figure 20 shows the three- 
dimensional spectra at x / M  = 51 and x / M  = 80 normalized with @ and I/r. The 
collapse is good. This is for the experiment with the mandoline a t  x / M  = 1.5. Figure 
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FIGURE 14. Decay of temperature fluctuations downstream from the heated mandoline. 

Distance of M andoline Current in 
mandoline from spacing mandoline Decay exponent 

grid, x / M  (cm) (4 m 

0 1.5 5.08 4 1.29 
*. 5.0 5-08 2.5 1.83 
f3 20.0 5.08 1-5 2.06 
0 20.0 2.54 1.5 3.20 

Distance of 
mandoline Spacing 

Experiment from grid, between Current in 
number x /M wires, y / M  wires (A) 
I 1.5 2 4.0 
I1 5 2 2.5 
I11 20 2 1.5 
IV  20 1 1-5 

Constants in decay law 
OZ/Tz = B(x/M)-" 

r \ 

- 
A 

B m 

4.65 x 104 1-29 
3.21 x 1.83 
1.24 x 10-4  2-06 
1.26 x 3.20 

TABLE 3. Mandoline configuration parameters and decay laws 
for the four mandoline experiments described. 

23-2 
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FIGURE 15. Three-dimensional temperature spectra at x / M  = 80 for the four mndoline experi- 
ments. Arbitrary units have been used for the vertical axis in order to compare the wavenumbers 
at  which each spectrum peaks. 
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FIGURE 16. The docay slope m and time-scale ratio r of the mandoline temperature fluctuation 
data (from figure 14) ws. the peaks of their respective temperature spectra at x / M  = 80 (from 
figure 15). 
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p Heated grid -7 

\ - 
- 

10-8 I 1 1 1 1 1 1 1 1  I I 1 1 1 1 1 l l  I 1 1 1 1 1 1 1 1  

0 10 100 1 000 
k (m-I) 

PIUURE 17. Comparison of the one-dimensional temperature spectra at x / M  = 80 for the heated 
grid (1 1.5 kW) and the mandoline (5.04 cm spacing, placed a t  x / M  = 20 from the grid). 

Parameter 

Experiment number 

I I1 I11 IV 
r h__ > 

- 
e a  ( 0 ~ 2 )  1.47 x 9.51 x 1.34 x 9.1 X 

r = m/n 0.96 1.37 1.54 2.39 

1-98 x lo-' 1.39 x 10-2 1.23 x lo-' 0.79 X lo-' 

€8 = - &dF/dt ("Ca/s) 3.03 x 2-78 x 4.43 x lo-* 4.67 x lo-' 

e: = E ( V / C ~ ) ~  ( o c a )  3.99 x 3-48 x 7.84 x lo-' 6-15 x 
- 

TABLE 4. Temperature parameters for the mandolines calculated a t  x / M  = 80 from the grid. 
T = 300°K for a11 experiments. g, E ~ ,  etc. were calculated from the decay laws. A value of 
2-26 x 10-6ma/s waa used for Ye, the thermal diffusivity. 
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FIGURE 18. Coherence of u and 0 at x / M  = 80 for the heated grid (1 1.5 kW) and 
the mandoline (5.04crn spacing, placed at x / M  = 20 from the grid). 
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FIGURE 19. Cross-correlation between u and 0 as a function of x / M  for the heated grid and 
mandoline. Q', heated grid, 11.5kW; 0, heated grid, 2.1 kW; 0 ,  mandoline at x / M  = 20, 
2.54 cm spacing; *, mandoline at x / M  = 20,5.08cm spacing;*, mmdoline at x lM = 5,5.08cm 
spacing; *, mandoline at x / M  = 1.5, 5.08 cm spacing. 



679 
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FIGURE 20. Normalized three-dimensional temperature spectra a t  x / M  = 51 and z / M  = 103 for 
the mandoline (5.04cm spacing, placed at x / M  = 1.5 from the grid). 

21 shows that all the mandoline data at x / M  = 80 collapse reasonably well with this 
normalization; the scatter is due to the slight departure of some points from the 
linear relation suggested by figure 16. 

Finally we present the three-dimensional dissipation spectra of temperature for the 
mandoline experiments for which m = 1-29 (figure 22) and rn = 2-06 (figure 23). The 
peaking of the spectra for m = 1.29 at a slightly lower wavenumber than those for 
m = 2.06 reflects the respective positions of the peaks of the three-dimensional tem- 
perature spectra (figures 15 and 16). The differences between the two spectra shown 
in figures 22 and 23 represent scatter and not a trend in the spectral shape with 
downstream distance. 
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FIGURE 2 1.  Normalized three-dimensional temperature spectra Bt 

x / M  = 80 for all four mandoline experiments. 
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klkk 

FIGURE 22. Normalized three-dimensional temperature dissipation spectra for the 
mndol ine  (5.04cm spacing, placed at x l M  = 1.5 from the grid, nt = 1.29). 
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FIGURE 23. Normalized three-dimensional temperature dissipation spectra for the 
mndoline (5OPcm spacing, placed at x / M  = 20 from the grid, m = 2.06). 

5. Concluding remarks 
The heated-grid data pose problems. We have stated that buoyancy was not 

playing a role in determining the 82 decay rate, that the velocity characteristics 
remained the same as for the unheated grid and that the ratio (g /T)  ( a l e )  was of 
order 10-3, indicating the insignificance of buoyancy compared with dissipation. 
However the shifting of the peak in the temperature spectrum (figure 9) as the grid 
heating is changed indicates that the geometry of the thermal field changes. This has 
led us to conclude that anisotropy may be the cause of the variation of @decay with 
grid heating. If this is the case its effect is profound, changing the 65 decay exponent 
by a factor of nearly two for our experiments and by a factor of 3.5 for the experiments 
in figure 1. Yet if anisotropy is playing a role it could be supposed that it should be 
also a function of the grid geometry. The grid of Lin & Lin (1973) consists of a complex 
structure of heating elements and flow channels and has a high effective solidity, 
probably producing jets rather than wakes as is the case for heated grids of lower 
solidity. Yet their data, as well as all the other data, show a very high correlation 
of fluctuation intensity us. decay slope (figure 8), suggesting that the grid structure is 
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not playing a role. This problem, and the problem of how the change in grid heating is 
affecting the thermal length scale without apparently affecting the velocity field, 
requires further investigation. 

The heated-mandoline experiments pose the question: is there an equilibrium value 
for the mechanical/thermal time-scale ratio? Our results suggest not; we find no 
evidence of the relaxation of r from its initial value to an equilibrium value in our wind 
tunnel, which extends to nearly one turbulence decay time. Recently, Newman & 
Herring (1978) have addressed this problem by applying the test-field model of 
Kraichnan (1971) to the deray of a passive scalar in isotropic turbulence. They find 
that in less than one turbulence decay time the time-scale ratio relaxes back to a 
value of unitywhatever the initialvalue was. Possiblythe time-scale ratio relaxes to an 
equilibrium value only in the presence of some other non-equilibrium such as the 
non-equilibrium in spectral transfer present in the TFM simulations caused by the 
establishment of spectral transfer which is initially zero. It is pleasing, however, to 
note that Newman & Herring find that the temperature spectrum peaks a t  a length 
scale greater than the velocity length scale for r = 1, in qualitative agreement with 
our results for r = 1. It should be noted that both the heated-grid data of Yeh & 
Van Atta (1973) and our heated-grid data for higher grid heating ( I  1.5 kW) also give 
r = 1 and that the ratio of the length scales of the velocity and temperature spectra is 
in reasonable agreement with the prediction of Newman & Herring. The grid heating 
chosen for these experiments appears to be fortuitous; as previously noted, for our 
lower grid heating the change in length scale (compared with that for the higher grid 
heating) obtained from the peak in the one-dimensional spectrum is not commensurate 
with the change in length scale deduced from the @decay law. 

We believe that our results should have ramifications for other non-equilibrium 
flows containing a scalar, for example flows in which chemical reaction rates are a 
function of the scalar fluctuation intensity or the formation and dissipation of clear-air 
turbulence. In these flows the scalar may not be passive but it is reasonable to expect 
that here too the destruction of scalar fluctuations (and their flux) should be a function 
of the initial relative scale sizes of the velocity and temperature field. 

We thank Mr E. P. Jordan for his diligent experimental assistance and Mr G. R. 
Newman for provocative discussions. This work was supported in part by grant no. 
DES76-13357/ATM75 13357-A01 from the U.S. National Science Foundation, 
Atmospheric Sciences Section, and in part by the U.S. Environmental Protection 
Agency through its Select Research Group in Air Pollution Meteorology, and was 
carried out a t  the Pennsylvania State University at University Park in the Department 
of Aerospace Engineering. 
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